

HRM: H-tree based reconfiguration mechanism in reconfigurable
homogeneous PE array

Junyong Deng1, Lin Jiang2, †, Yun Zhu1, Xiaoyan Xie3, Xinchuang Liu1, Feilong He3, Shuang Song4,
and L. K. John4

1School of Electronic Engineering, Xi’an University of Posts & Telecommunications, Xi’an 710121, China
2School of Communication and Information Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
3School of Computer, Xi’an University of Posts & Telecommunications, Xi’an 710121, China
4The University of Texas at Austin, TX 78712, USA

Abstract: In order to accommodate the variety of algorithms with different performance in specific application and improve
power efficiency, reconfigurable architecture has become an effective methodology in academia and industry. However, exist-
ing architectures suffer from performance bottleneck due to slow updating of contexts and inadequate flexibility. This paper
presents an H-tree based reconfiguration mechanism (HRM) with Huffman-coding-like and mask addressing method in a homo-
geneous processing element (PE) array, which supports both programmable and data-driven modes. The proposed HRM can
transfer reconfiguration instructions/contexts to a particular PE or associated PEs simultaneously in one clock cycle in unicast,
multicast and broadcast mode, and shut down the unnecessary PE/PEs according to the current configuration. To verify the cor-
rectness and efficiency, we implement it in RTL synthesis and FPGA prototype. Compared to prior works, the experiment res-
ults show that the HRM has improved the work frequency by an average of 23.4%, increased the updating speed by 2×, and re-
duced the area by 36.9%; HRM can also power off the unnecessary PEs which reduced 51% of dynamic power dissipation in cer-
tain application configuration. Furthermore, in the data-driven mode, the system frequency can reach 214 MHz, which is 1.68×
higher compared with the programmable mode.

Key words: H-tree based reconfiguration mechanism (HRM); Huffman-coding-like addressing; programmable mode; data-driv-
en mode; homogeneous PE array

Citation: J Y Deng, L Jiang, Y Zhu, X Y Xie, X C Liu, F L He, S Song, and L K John, HRM: H-tree based reconfiguration mechanism in
reconfigurable homogeneous PE array[J]. J. Semicond., 2020, 41(2), 022402. http://doi.org/10.1088/1674-4926/41/2/022402

1. Introduction

With the increasingly complex, ever-changing and ever-in-
creasing performance requirements of applications, the com-
puting capability and flexibility of existing hardware plat-
forms have been challenged, especially in video processing[1],
graphics processing[2, 3], and artificial intelligence[4, 5] applica-
tions, etc. Video processing has been one of the most popu-
lar domains for multiple decades. Modern video processing
technology aims to achieve high resolution, 3-dimensional re-
presentations while supporting multiple standards with low po-
wer consumption. To achieve this, software/system experts
leverage multiple novel algorithms in a single processing
framework to satisfy the requirements of various execution
phases. The same situation has also been encountered in
graphics processing, which has many different algorithms
with different efficiencies for different rendering scenarios[6].
How to efficiently support multiple algorithms from the hard-
ware perspective arises as a critical design challenge, and has
gained a lot interest in both academia and industry com-
munity.

The traditional ASIC (application specific integrated cir-

cuit) platform possesses the highest performance but cannot
support algorithm expendability[7]. The multi-core platform
has the highest flexibility but do not possess the fast comput-
ing capability and low power dissipation[8]. With the increas-
ing demand of flexibility, performance and application-specif-
ic optimization, the reconfigurable architecture paradigm,
which yields high performance, programmability and low
costs, has become a popular implementation platform[6, 9].

Reconfigurable architectures can be classified into fine-
grained, coarse-grained or hybrid grained on the basis of the
granularity at which reconfiguration is done[10]. Coarse gra-
ined reconfigurable architectures (CGRAs), compared to FP-
GAs, incur lower reconfiguration area (66% to 99.06%) and en-
ergy costs (88% to 98%)[11], while FPGA is easier in partial re-
configuration since it utilizes the LUT (look-up table) as the ba-
sic operating unit, but the large amount of LUTs leads to
huge configuration files and hence a long time for reconfigura-
tion due to the overhead of bit-level reconfigurability[12].
CGRA-based multi-core architecture then emerged to acceler-
ate the entire application by running separate kernels or
inter-dependent kernels in parallel[13], however, these architec-
tures are not flexible enough to adaptively support various
cases of the kernel-level parallelism (KLP) because the re-
sources cannot be efficiently utilized under monotonous ag-
gregation of multiple/many CGRAs, which results in either
high power dissipation or performance bottleneck[14]. There-

Correspondence to: L Jiang, jianglin@xust.edu.cn
Received 27 OCTOBER 2019; Revised 13 DECEMBER 2019.

©2020 Chinese Institute of Electronics

ARTICLES

Journal of Semiconductors
(2020) 41, 022402

doi: 10.1088/1674-4926/41/2/022402

http://dx.doi.org/10.1088/1674-4926/41/2/022402

fore, boosting the efficiency of reconfigurable platform is con-
sidered as a critical concern.

To solve such practical challenges, we propose a new re-
configuration mechanism for modern video and graphics pro-
cessing on the customized CGRA-like architectures or pro-
cessing elements (PE) array. This reconfiguration mechanism,
which is called H-tree based hierarchical reconfiguration mech-
anism (HRM)[15], focuses on fast updating and the simultan-
eous invoking of reconfiguration context and scalability of
computing resource, which can also shut down the PE/PEs
that are not necessary for the current configuration to re-
duce the power consumption. Originally, the H-tree is widely
used to achieve simultaneous delivery of clock signal in
large-scale IC (Integrated Circuit) design without skew. Com-
pared to its original use of transferring clock signal, the
amount of reconfiguration contexts needs to be delivered in
the reconfigurable domain is much larger. Hence, achieving
simultaneous update is difficult. Huffman coding is the best
coding method for constructing variable length character
based on the probability of character occurrence. At each en-
coding node, the character is determined as ‘0’ or ‘1’ accord-
ing to the probability of the code appearing, and the final en-
coding is generated in this way. Similarly, The HRM gener-
ates the address code of the destination PE based on the prin-
ciple of ‘0’ for turning left and ‘1’ for turning right. The HRM
with Huffman-coding-like and mask addressing method can
transfer reconfigurable contexts in unicast, multicast or broad-
cast mode and trigger them simultaneously. We also pro-
posed a CGRA-like homogeneous PE array with HRM for
video and graphics processing to verify the proposed ap-
proach. The PE can support both programmable mode and
data-driven mode. The proposed PE array with HRM can
achieve comparable performance with ASIC when work is
done in data-driven mode.

The contributions of this paper can be summarized as fol-
lows:

We propose a novel H-tree based hierarchical reconfigura-
tion mechanism to achieve high-speed reconfiguration on
modern CGRA-like architectures or PE arrays, which achieves
more than 20% improvement in working frequency and is 2×
faster in context updating.

(1) We leverage the Huffman-coding-like addressing and
mask addressing methods to achieve the simultaneous move-
ment of reconfiguration contexts among particular/related
PEs in unicast, multicast, and broadcast modes. In addition,
such achievement provides the scalability for computing re-
sources, and can power-off the unnecessary PEs in current
scenario to decrease power consumption.

(2) We design a homogeneous PE array to verify the
HRM, while the PE supports both programmable mode and
data-driven mode, and it can achieve comparable perform-
ance with ASIC in data-driven mode.

The rest of this paper is organized as follows. Section 2
summarizes the related works of remapping context trans-
mission and management strategies. Section 3 presents the
motivation of the proposed reconfiguration mechanism. In
Section 4, we elaborate the methodology in details, includ-
ing both the HRM and also the associated PE array architec-
ture. Section 5 depicts the architecture modeling, RTL design with
Verilog and implementation of prototype system. Section 6

demonstrates the evaluation results and Section 7 concludes
the paper.

2. Related works

In order to enhance the resource utilization (also the com-
puting capability) and the flexibility of a reconfigurable sys-
tem, the design of reconfiguration mechanism has gained tre-
mendous amount of attention. Such mechanisms usually con-
trol reconfigurable context transmission and manage such
contexts. In this section, we review context transmission
technologies and context management strategies separately.

2.1. Context transmission

Run-time remapping tries to change the physical loca-
tion of a task to decrease the requirements of memory band-
width, communication costs[16]. Dynamic parallelism explores
the parallelism of a task to induce speedup[17]. However, the
existing re-mappers mostly target packet-switched NoC (net-
work on chips) and are therefore not applicable to most
CGRAs[14] or CGRA-based multi-core architecture. As for FP-
GA, the typical example of fine-grained reconfigurable archit-
ecture, which is claimed as supporting partial or dynamic re-
configuration, cannot achieve the goal actually because of
the large size of configuration file which results long confi-
guration time and leads to inadequate flexibility[18, 19].

2.2. Context management

The RSF[13] approach utilizes the pipelining of kernel-
stream and intra/inter-CGRA co-reconfiguration to achieve
the design objectives of minimal interconnection overhead
and flexibility comparable to completely connected fabric
(CCF). It accomplishes the objectives with the sharing of con-
text memory (CMs) and data buffers (DBs). The TransMap[11]

method stores only one implementation scheme in the con-
figuration memory and applies a series of transformations to
the stored bit-stream for remapping or parallelizing an appli-
cation. In order to accelerate the transmission of contexts,
some context compression methods have also been deve-
loped[20, 21]. The fat binary approach stores multiple task map-
ping schemes for each application at compile time and dyna-
mically chooses the appropriate one at runtime[22]. The de-
cision of choosing the appropriate scheme is application-de-
pendent. And in HReA[10], where the whole PE array shares
one CM with one data access port.

3. Motivation

In this section, we present the motivation of our ap-
proaches. The primary motivation comes from the actual
speed requirements of switching among multimedia applica-
tions and the scalability analysis of current reconfigurable
mechanisms.

3.1. Fast updating and invoking of reconfigurable

context

Fast function switching is critical for the performance of
reconfigurable platform. The representative of fine grained
reconfigurable architecture, FPGA (field programmable gate ar-
ray), consumes milliseconds of time to reorganize the func-
tion due to its bit-level reconfigurability, such as 534 ms for
Stratix5-GXA3[19]. In the RSF approach mentioned in the
Ref. [13], one CM can be shared by the two CGRAs next to it,

2 Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022402

J Y Deng et al.: HRM: H-tree based reconfiguration mechanism in reconfigurable

so one CGRA can be configured to execute the tasks follow-
ing the contents of two different CMs which are located at
the different directions of it. This means that one CGRA can
work in at least two different configurations. However, the up-
dating of the CM’s content is not described in the RSF meth-
od. The CM in RSF is of 4 kB size, which needs a considerable
amount of time to fill in, and it is also critical for the partial or
dynamic reconfiguration of the computing resources. The
context compression related approaches need decompres-
sion process, which will consume additional time for decom-
pression and also increase the design overhead. We propose
a H-tree based hierarchical reconfiguration mechanism which
can propagate the context/instruction information from the
controller or the host end in one cycle. When the computing
resources (PEs in our approach) work in the SIMD or data-driv-
en mode, the reconfiguration of a PE can be done in only a
single clock cycle. The contexts or instructions stored in the
memory can be invoked with a call-like instruction and the
RAM part of the context memory can be updated prior to the
call according to the performance model, which will hide the
latency of updating process. The call-like instruction invokes
parts or all the contents according to the instruction name
which is similar to the API (application programming inter-
face) function such as OpenGL commands. As for the start
and stop of transmission, there should be a performance evalu-
ation model which is application-dependent.

3.2. Scalability of reconfiguration mechanism

With the new transistor process and tri-gate fin design, a
single chip will accommodate more computing resources[23].
So, the reconfiguration mechanism should facilitate this real-
ity with minimal interconnection overheads increasing. In or-
der to achieve this goal, the reconfiguration mechanism
should support the scalability of computing resources. The re-
configuration mechanism we proposed can access each PE
with 10-bit address bus at the root and 1-bit bus at the PE
end in one clock cycle in our 32 × 32 PE array architecture.
This mechanism possesses the characteristic of scalability,

which can be expended easily to larger scale PE array. For ex-
ample, with 1-bit more address bus at the root of H-tree, it
can access 2048-PE array with little performance degradation.

Motivated by the above description, and also the power
consumption requirement, which is a key challenge in large
scale system on chip (SoC), we propose HRM to increase re-
configuration efficiency, minimize interconnection costs
while supporting high-throughput operating modes such as
SIMD (single instruction multiple data) and data-driven for
the entire system to achieve, and control the power dissipa-
tion by shutting down unused computing resources in specif-
ic scenarios. The proposed method is one kind of system solu-
tion for video processing and graphics processing applica-
tions.

4. Methodology

This section discusses the HRM with Huffman-coding-like
addressing and mask addressing firstly, and then demon-
strates the HRM applied reconfigurable PE array architecture.

4.1. HRM

In order to improve the efficiency of reconfiguration (in-
cluding the fast updating and invoking of reconfigurable con-
text), minimize interconnection costs, and also control the
power consumption, we propose HRM — a novel reconfigura-
tion mechanism. The HRM leverages Huffman-coding-like ad-
dressing and mask addressing, which can be easily applied
on a homogeneous thin-core PE array (for example, consist-
ing with 1024 PEs). The HRM structure is shown in Fig. 1. In
order to show it clearly, Fig. 1 only presents 8 × 8 PEs.

HRM is designed from the idea of clock-tree with H-type,
which can guarantee the minimal time skew so that the inform-
ation can arrive at every destination at the same time. The
video processing and graphics processing need some associ-
ated PEs to work together as a certain function unit. For ex-
ample, the reconfigurable video processing system requires
multiple PEs to execute the same task, such as intra-predic-
tion (Intra), integer motion estimation (IME), fractional mo-

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

1

1
0

1

0

Addressing
module

Data feedback module

Mask detection
module

Global controller

Host interface

Addressing
module

Data feedback module

Mask detection
module

Global controller

Host interface

Node1

Node2_1 Node2_2

Node3_1

Node3_2

Node3_3

Node3_4

Node4_1 Node4_2

Node4_3 Node4_4

Node4_5 Node4_6

Node4_7 Node4_8

Node5_2

Node6_3

Node5_1 Node5_3

Node5_4

Node6_1 Node6_2

Node6_4

Node6_5 Node6_6

Node6_7 Node6_8

Node5_5

Node5_6

Node5_7

Node5_8

Node5_9

Node5_10

Node5_11

Node5_12

Node5_13

Node5_14

Node5_15

Node5_16

Node6_9 Node6_10

Node6_11 Node6_12

Node6_13 Node6_14

Node6_15 Node6_16

Node6_17 Node6_18

Node6_19 Node6_20

Node6_21 Node6_22

Node6_23 Node6_24

Node6_25 Node6_26

Node6_27 Node6_28

Node6_29 Node6_30

Node6_31 Node6_32

X

X

0

1

X
X

X

0

1

0

1

Node1

Node2_1 Node2_2

Node3_1

Node3_2

Node3_3

Node3_4

Node4_1 Node4_2

Node4_3 Node4_4

Node4_5 Node4_6

Node4_7 Node4_8

Node5_2

Node6_3

Node5_1 Node5_3

Node5_4

Node6_1 Node6_2

Node6_4

Node6_5 Node6_6

Node6_7 Node6_8

Node5_5

Node5_6

Node5_7

Node5_8

Node5_9

Node5_10

Node5_11

Node5_12

Node5_13

Node5_14

Node5_15

Node5_16

Node6_9 Node6_10

Node6_11 Node6_12

Node6_13 Node6_14

Node6_15 Node6_16

Node6_17 Node6_18

Node6_19 Node6_20

Node6_21 Node6_22

Node6_23 Node6_24

Node6_25 Node6_26

Node6_27 Node6_28

Node6_29 Node6_30

Node6_31 Node6_32

(a) (b)

Fig. 1. (Color online) The topology of HRM. (a) Unicast. (b) Multicast/broadcast.

Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022402 3

J Y Deng et al.: HRM: H-tree based reconfiguration mechanism in reconfigurable

tion estimation (FME), motion compensation (MC), DeBlock-
ing filter (DB), etc. And in graphics processing field, the ver-
tex shading, the plane-clip, projection, 3D-Clip, pixel shading,
primitive assemble unit, back-face culling, viewport trans-
formation, fragment operating unit and so on are also need
several PEs to work together[24–26]. The associated PEs should
also start simultaneously to process in parallel.

The global controller determines the operating mode
and selects the appropriate algorithm for PEs. HRM is used to
transfer the instructions or configuration messages to a specif-
ic PE or associated PEs, and collect status information of each
PE to the global controller. When the global controller trans-
fers data to or from the PEs via HRM, it utilizes Huffman-cod-
ing-like code to address each PE. Using the 1024-PE array as
an example, HRM addressing bus is of 10-bit width at the
root (the bus end which connects to the controller). HRM will
take 10-level turns to access the destination end (each PE).
When the bit of the bus is logic ‘1’, HRM will take a right turn;
If the bit[9] is logic ‘0’, HRM will take a left turn. The bus width
will be 9-bit width after the 1st turn, 8-bit width after the 2nd
turn, and soon. When the information delivered by HRM
reaches the PE, the bus is only 1-bit width. The 10-bit ad-
dress can also be used as mask information transmission,
which is used for multicast or broadcast of reconfiguration con-
text. This kind of addressing is easy to expand to facilitate to
the larger scale PE array with low cost. For example, if the PE
array is of 2048 PEs, the bus width is only 1-bit wider at the
root. In addition to the addressing bus, there is 1-bit power
control signal, which is leveraged to realize the clock gating.
This bit is logic ‘1’ by default. After the configuration, HRM
will set this bit ‘0’ and disable the clock of each unused PE in
current scenario.

With the Huffman-coding-like addressing and mask ad-
dressing method, HRM can transmit/receive four kinds of in-
struction/context information with 32-bit width:

(1) The operation instruction with issuing format of: 2-bit
flag of ‘01’ + 30-bit RISC-like instruction.

(2) The ‘call’ instruction with issuing format of: 2-bit flag
of ‘11’ + 16-bit invoking address + 14-bit extensible space.

(3) The broadcast SIMD/data-driven instruction with issu-
ing format of: 2-bit flag of ‘10’ + 30-bit RISC-like instruction.
In this format, the broadcast mask should be transmitted first
with the 2-bit flag of ‘10’, and at each turn, the switch node
will mark the transmitting direction according to the bit
value. If that bit is logic ‘1’, the instruction sent next will be
transmitted in both directions; as for logic ‘0’, the instruction
sent next will be transmitted according to the address bit
value.

(4) The status feedback with issuing format: 2-bit flag of
‘00’+30-bit extensible space. This is used for collecting the
status of each computing resource for performance evalu-
ation, and it is running parallel with the computing resource
without disturbing the normal operation.

The global controller monitors the operating status of
each functional unit, determines the operating mode, and se-
lects a particular algorithm based on the performance evalu-
ation model in real time for PEs. When the host interface ac-
cesses the array processor, the global controller receives the
bus information from the host interface and judges whether
the instruction is unicasted, multicasted, broadcasted, or fed

back according to the flag.

4.2. PE array structure

The HRM is applied on the homogeneous thin-core PE ar-
ray. In order to verify the availability of HRM, we also design a
reconfigurable PE array. The proposed PE array is different
from the CGRA-based multi-core architecture[13], but with simil-
ar functionalities and the same 2D mesh structure. Such similar-
ities guarantee that the HRM can be adopted by other state-
of-the-art CGRA-based architectures directly. The CGRA-based
multi-core architecture typically includes general purpose pro-
cessors, multi-CGRA, and on-chip communication architec-
ture such as NoCs or on-chip bus. The general purpose pro-
cessor mainly executes control instructions and irregular
code segments. The multi-CGRA performs data-intensive ker-
nel code segments. The proposed PE array composes of 1024
homogeneous thin-core RISC-like (reduced instruction-set com-
puter) processing elements. The 1024 PEs is coupled directly
with adjacent interconnect, in which each 4 × 4 PEs form a lo-
gical PE cluster (PEC), as shown in Fig. 2(b).

The 1024 PE array consists of 64 clusters organized in 8 ×
8 structure. In many applications, there exists remote data com-
munication between different PEs. The adjacent intercon-
nect and distributed memory cannot efficiently and flexibly
handle such communications. We develop an inter-cluster com-
munication structure which connects the PEC with a router
(R) through network adapter (NA). The topology is shown in
Fig. 2(a).

The PE communicates with the adjacent PE through four
shared registers (RN, RE, RW,RS, which represents the four dir-
ections, north, east, west, and south respectively), which can
be called the NEWS adjacent interconnect[27]. These registers
can be accessed directly by each adjacent PE. Each PE has 12
local registers and 4 shared registers. Totally, each PE can ma-
nipulate 16 registers. Since the PE is RISC-like processor, it
can burden the role of general purpose processor to process
intensive control instructions or irregular tasks. In addition,
since there are many PEs, they can handle the ILP (instruc-
tion level parallelism) computing mode.

The PE can also be configured as data-driven mode for im-
proving the performance and energy efficiency, which can be
enabled or disabled by the control commands transmitted by
HRM. As shown in Fig. 2(c), the bold lines indicate the con-
trol flow and data flow after the data-driven mode is enabled,
and the control flow mainly includes the operation code and
the data path reconstruction signal, where the dataflow
comes from the last-level PE. When data-driven mode is en-
abled, the fetch stage, the decode stage, and the write back
stage are stalled by the gated clock. The data from the last-
level PE is directly transmitted to the execution unit, and the
corresponding operation is performed according to the opera-
tion code received from the HRM, then the result is sent to
the adjacent PE through four shared registers directly.

The instruction memory (IM) of each PE used to buffer
the operating instructions/contexts. The operations of a partic-
ular application are stored in the IM as default configuration
when power on the system. As the operating instruction is
stored in the memory, the proposed reconfiguration mechan-
ism may sound no different than fat binary. However, the IM
also can receive run-time reconfiguration contexts from the
global controller through the HRM based on the selected per-

4 Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022402

J Y Deng et al.: HRM: H-tree based reconfiguration mechanism in reconfigurable

formance model. Under the help of HRM, the reorganized
function running on one PE or several associated PEs can
start simultaneously, which is very different from fat binary.
With the instructions stored in default, or the real-time instru-
ctions passed from the global controller through HRM, the
PEs can act as a specific function unit (FU) and operate at
data-driven mode to improve performance while reducing
power dissipation.

The data memory of the PE array is of distributed shared
structure. Each PE has its own data memory with size of
512 B. In order to achieve the large memory size and low ac-

cessing latency, the RAMs in a PE cluster are shared logically
through the column and row buses as shown in Fig. 3. In
order to show it clearly, Fig. 3 only presents the memory
shared structure of 4 PEs. As for the intra-cluster data access,
a high-speed switching structure is realized, which can meet
16-channel data parallel read/write access.

5. Prototype development and experimental
setup

This section describes the architecture modeling soft-
ware platform, RTL synthesis configuration, and FPGA proto-

R

PE00 PE01 PE02 PE03

PE00 PE01 PE02 PE03

PE00 PE01 PE02 PE03

PE00 PE01 PE02 PE03

RN RN RNRN

R
W

R
W

R
W

R
WR
E

R
E

R
ER
E

RS RSRSRS

PE cluster

Network adapter

Router

(a) (b)

(c)

IM

DEC

EX

MA

WB

MA

WBidex_wb_ctrl

idex_mem_ctrl

PC_ctrl

flags

Data

memory

RegFile

PC-gen

IR

Decoded

sigs

FW_ID FW_EX

Control flow

data from

adjacent PE

M

U

X

M

U

X

A

L

U

M

U

X

M

U

X

M

U

X

M

U

X

RE
RS
RW
RN

RN RN RNRN

R
W

R
W

R
W

R
WR
E

R
E R
E

R
E

RS RSRSRS

RN RN RNRN

R
W

R
W

R
W

R
WR
E

R
E

R
ER
E

RS RSRSRS

RN RN RNRN

R
W

R
W

R
W

R
WR
E

R
E

R
ER
E

RS RSRSRS

R

R

PEC

NA

PEC

NA

R

PEC

NA

PEC

NA
PEC

NA

R

M

U

X

Fig. 2. (Color online) Homogeneous thin-core PE array. (a) Inter –cluster communicate. (b) PE cluster. (c) Micro-architecture of PE.

Column bus 0

Column bus 1

Arbitration

module

PE

00
RAM

00

Arbitration

module

Arbitration

module

Arbitration

module

Arbitration

module

Arbitration

module

Arbitration

module

Arbitration

module

L
in

e
 b

u
s
 0

L
in

e
 b

u
s
 1

L
in

e
 b

u
s
 2

PE

01
RAM

01

PE

10
RAM

10

PE

11
RAM

11

Fig. 3. (Color online) Distributed shared memory structure.

Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022402 5

J Y Deng et al.: HRM: H-tree based reconfiguration mechanism in reconfigurable

type system.

5.1. Architecture modeling

In order to evaluate the feasibility of the proposed recon-
figurable mechanism, we developed an architecture model us-
ing SystemC[28], which describes the behavioral model of the
1024 PE array. The reconfigurable interface is developed with
Qt[29], which communicates the reconfiguration contexts and
video sequence/graphics data between the user and PE array.
The user can type the operation into each PE and assemble it
into binary automatically.

5.2. Design of HRM

According to the above analysis, the key to realize fast
and dynamic reconstruction of reconfigurable array is HRM.
Therefore, in this part, we further explain the hardware archi-
tecture of HRM in combination with Section 4 of HRM design
ideas and methods. According to Fig. 1, the hardware archi-
tecture consists of two parts: a global controller and an H-
type reconfiguration network.

Global controller: It is used to complete management of
configuration information, monitoring of PE status, and data
interaction with the host. The configuration information man-
agement module includes two parts: a configuration storage
management module and a configuration network address
generation module. The configuration storage manager gener-
ates a corresponding address according to the request sent
by the host, accesses the corresponding configuration stor-
age, and configures the network address generation module.
The network address generator configures the addressing
node according to the requirements. The data interaction on
the host side mainly receives commands from the upper
layer host and provides real-time feedback status information
of the PE array.

H-type reconfiguration network: This network completes
the delivery of configuration information and the collection
of status information. In Fig. 1, each node in the H-type has
two configurable registers, one for directional and one for
mask. The directional controls the transmission in a single dir-
ection on the node, with left ‘0’ and right ‘1’. The mask con-
trols the simultaneous transmission in both directions on the
node. The mask control has a higher priority than the direc-
tion control. The entire data path is established by configur-
ing these two registers on each node to achieve unicast, mul-
ticast and broadcast of the array. As shown in Fig. 1(a) (which
consists of 8 × 8 PEs, inferring 6-bit addressing bus), after
configuration the unicast mode is adopted, and the configura-
tion information is sent to the destination PE through
Node1_1, Node2_1, Node3_1, Node4_1, Node5_2, and
Node6_3 in sequential order. Since the addressing of the PE
(filled with red) takes six turns of right, right, left, left, right,
and left, the address should be 110010. The multicast or broad-
cast mode is shown in Fig. 1(b). The configuration informa-
tion arrives at Node2_1 and Node2_2 at the same time. The
subsequent configuration process is similar to the unicast
mode. When transfer a single configuration to a PE, the ad-
dress and operation code are transferred in one pass[6, 30];
When a series of configuration information required by a PE,
we use the transfer method with link establishment, data trans-
fer, and link termination. During the data transfer, the follow-
ing configuration information does not need to have ad-
dress information. The network is also responsible for collect-

ing data from PE/PEs to the host for performance evaluation.

5.3. Implementation of prototype system

We developed the hardware of proposed HRM and also
the PE array using Verilog HDL. The circuit specification of
the proposed architecture and the RSF architecture is shown
in Table 1. The prototype system of the proposed approach
is implemented in the BEE4 FPGA development board of
BeeCube with the FPGA chip of XC6VLX550T, as shown in
Fig. 4, which takes video processing as an example. The top
left part shows the console on host machine, where the user
can input the video sequence and reconfiguration contexts.
The bottom left part shows the console of the BEE4, where
user can configure the FPGA and enable it to execute. The bot-
tom right part is BEE4 platform, where the proposed HRM
and PE array are mapped into and running on. The top right
part is the reconstruction image, where the user can observe
the results intuitively. The prototype system can work at
speed of up to 150 MHz, and the HRM can work at 440 MHz,
which means that the proposed reconfigurable mechanism
won’t be the bottleneck of the whole system. In Fig. 4, the
program running on each PE is stored by default, so it is the
power-on configuration of the PE array. In the next part, we
will describe the reconfiguration process.

6. Evaluation

In this section, we examine the reconfigurable process

Table 1. PE cluster RTL implementation.

Component Parameter This paper RSF
PE Bit-width of regs in a PE 16 16

of regs in a PE 16 4
of PEs 16 16

CM(4 kB)/IM(1 kB) Bit-width of a CM/IM 32 32

of CMs/IMs 16 16
CB(1.5 kB)/DRAM(512 B) # of sets 1 2

of banks in a set 1 3
Bit-width of a bank 16 32

Application console under Matlab and

video encoding result

BEE4 console BEE4 platform

Fig. 4. (Color online) The prototype system of the proposed approach.

6 Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022402

J Y Deng et al.: HRM: H-tree based reconfiguration mechanism in reconfigurable

on the prototype platform. We check the whole system struc-
ture reorganization on video processing, graphics processing,
the data-driven mode operation to achieve high perform-
ance and low power consumption, and then the comparison
of reconfigurable process.

6.1. Application in video processing

Under the proposed HRM and associated PE array, we
implemented one kind of video processing system, as shown
in Fig. 5(a). While testing, we found that the FUs, such as In-
tra and MC, are the bottlenecks. Then we reorganized it to
Fig. 5(b) in run-time. In Fig. 5, each module with different col-
or presents different FU, and each FU occupies a PE cluster.

In order to realize this reconfiguration, the contexts
should be transferred are shown in Table 2. As shown in
Fig. 5, when the array is initialized, PEC01 performs DCT al-
gorithm and occupies 16 PEs. After reconfiguration, the clu-
ster performs Intra prediction algorithm and occupies 2 PEs.
We use 16→2 to indicate this change, so are the 15→8,
9→12, etc. The operation instructions can be transferred dur-
ing the execution of last reconfiguration, so the reorganiza-
tion of PE array only spend the time of call instructions’ trans-

mission, which means the reconfiguration time is 55 clock
cycles. In HReA, the contexts’ transmission is finished through
router. And technically the PE’s reconfiguration will spend at
least 2 cycles for each call-like context, i.e., it will spend 2×
more time for reconfiguration. Fig. 6 shows the video pro-
cessing results under two sequences.

Meanwhile, we compared the power consumption of
the new configuration of video processing with and with-
out the power control. If left the unused PEs running in idle,
the dynamic power dissipation is 286 mW; while in the HRM
verison, we leverage the power control signal to disable the
unnecessary PEs in this context, and the dynamic power dissi-
pation is 139 mW. The power consumption reduced about
51%.

6.2. Application in graphics processing

We also apply the proposed HRM and associated PE ar-
ray to graphics processing. Here we take a scene of viewport
transform as an example. The scheme is mapped the graph-
ics processing algorithm on 1 PE cluster. By reconfiguring the
function of PE, the viewport transformation can be flexibly real-
ized with lower computation cost[6]. Fig. 7 shows the overall
mapping process of viewport transformation. The final out-
put is consistent with the results derived from the software
VS2013 platform, proving the correctly implementation of
graphics processing algorithm on the proposed HRM and PE
array. Fig. 8 shows the output from the prototype system,
where the two mouse marks are used for select and feed-
back of OpenGL.

6.3. Realization of data-driven mode

Data-driven mode is used for the data intensive computa-
tion. We select the six-tap filter in fractional motion estima-

Table 2. The statistics of reconfiguration instructions.

FU changing PE Operation instruction Call instruction

DCT→Intra 16→2 2856 8
DB→Intra 15→8 2087 9
Intra→DB 9→12 2584 8
IME→DCT 11→16 3136 7
FME→IME 2→11 39 16
FME 2 0 2
MC 5 0 5

Intra DCT FME FME MC DCT

DB IME FME DB

PEC00 PEC03 PEC04 PEC05

PEC10 PEC11 PEC12 PEC14

PEC01 PEC02

Intra DCT FME

FME MC DCT

DB

IME

FME

DB
(a) (b)

PEC00 PEC03 PEC04 PEC05

PEC10 PEC11 PEC12 PEC14

PEC01 PEC02

Intra

MC

PEC15PEC13

Fig. 5. (Color online) Organizations of video processing system. (a) Original organization of video processing system. (b) Video processing sys-
tem with higher parallelism.

(a)

(b)

Fig. 6. Results of different sequences in video processing. (a) Salesman. (b) Bridge.

Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022402 7

J Y Deng et al.: HRM: H-tree based reconfiguration mechanism in reconfigurable

tion (FME) algorithm of video encoding. FME performs mo-
tion search around the refinement center pointed to by in-
teger motion estimation (IMV) and further refines the integer
motion vectors (IMVs) into fractional MVs (FMVs) of quarter-
pixel precision. FME interpolates half-pixels using a six-tap fil-
ter. The six-tap filter was expressed and realized in ASIC struc-
ture as shown in Fig. 9(a). In order to realize it in proposed
structure, we map it on the PE array as shown in Fig. 9(b). All
the configuration contexts are transferred from global control-
ler through HRM, and each associated PE latch its own config-
uration information. Then the PE array works in this configura-
tion. In such scenario, the working speed can reach 214 MHz
in this FPGA. And if we utilize Verilog HDL to describe the six-
tap filter directly and implemented it on the same FPGA, its
operating frequency is 500 MHz. The results show that the
performance of proposed reconfigurable structure is compar-
able to the ASIC circuit.

6.4. RTL-synthesis results

In order to evaluate the performance of the proposed ar-
chitecture and the HRM, we synthesize the circuit using
design compiler under the process of 90 nm CMOS techno-
logy. The results of area, critical delay, and power dissipation
are shown in Table 3. The synthesis results show that the pro-
posed approach has some advantages in speed, and area of
25.1%, 36.9%, respectively when compared with RSF,
however, the power dissipation is higher, but still very low,
about 1.96 mW. When compared with HReA, the speed advant-
age is about 21.6%, however, the HReA is implemented un-
der the 65 nm CMOS technology. The HRM maximum operat-

ing frequency can reach 494.16 MHz. The instruction issuing
operation is completed in one cycle, the instruction broadca-
sting operation is completed in 2 cycles, and the data feed-
back operation is completed in one cycle. Hence, we can pre-
dict that HRM will have a comparable speedup under the
same technology. From Table 3, we can observe that the
HRM only occupies 0.1% area of one PE cluster. The area cost
can be negligible.

7. Conclusion

Prior reconfigurable architectures suffer from perform-
ance bottleneck due to the inadequate flexibility and low con-
text switching speed. This paper proposes a fast reconfigur-
able mechanism —HRM and applies it in a massive homogen-
eous PE array to achieve the simultaneous movement of recon-
figuration contexts among particular/related PEs in unicast,
multicast, or broadcast modes and also control the power.
We develop the HRM architecture model using SystemC, imp-
lement the HRM design in Verilog, simulate with Questasim,
synthesize using Design Compiler, and implement on a FP-
GA board. Compared to the RSF and HReA, HRM can spee-

Table 3. Synthesis results of PE cluster.

Comparison
aspect

PE cluster
HRMThis

paper RSF HReA Comparison

Process (nm) 90 90 65 — 90
Area (gate
equivalent)

4155696 6586491 — 36.9%↓ 4331

Critical delay
(ns)

2.80 3.74 3.57 25.1%↓,
21.6%↓

2.02

Power (mW) 1.96 0.8 — 145%↑ 0.48

XH20*

(W/2)H10

PE00

YH20*

(H/2)H10

PE01

XL12*

(W/2)L12

PE03

ZH20*

(H−n)H10

PE02

XH20*

(W/2)M10

PE10

YH20*

(H/2)M10

PE11

YL12*

(H/2)L12

PE13

ZL12*

((f−n)/2)H10

PE12

XH20*

(W/2)L12

PE20

YH20*

(H/2)L12

PE21

(W/2) + X0

H/2
W/2

(H/2) + Y0

PE23

(f+n)/2

PE22

XL12*

(W/2)H20

PE30

YL12*

(H/2)H20

PE31

ST

PE03PE32

Fig. 7. Mapping of viewport transportation.

Fig. 8. (Color online) Rendering scene by proposed scheme.

+ + +

<<2

−

<<2−

−

a
(a)

(b)

f b e c d

+ + MOV +

MOV − − <<2

− <<2

Fig. 9. Data-driven mode mapping of six-tap filter. (a) Six-tap filter. (b)
Data-driven mode mapping.

8 Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022402

J Y Deng et al.: HRM: H-tree based reconfiguration mechanism in reconfigurable

dup critical delay by an average of 23.4%, and improve the
context/algorithm switching performance by 2× while sav-
ing 36.9% area. In the context switching, HRM can shut down
the unnecessary PEs which reduced 51% of dynamic power
dissipation in one video processing configuration. Moreover,
in the data-driven mode, the proposed PE array with HRM
can achieve performance comparable to ASICs.

Acknowledgments

This work was supported by the National Natural Sci-
ence Foundation of China (Nos. 61834005, 61602377,
61772417, 61802304, 61874087) and the Shaanxi Internation-
al Science and Technology Cooperation Program No.
2018KW-006, Shaanxi Provincial Key R&D Plan under Grant
No. 2017GY-060, and Shaanxi Province Co-ordination Innova-
tion Project of Science and Technology under Grant No.
2016KTZDGY02-04-02.

References

Yun Z, Jiang L, Wang S, et al. Design of reconfigurable array pro-
cessor for multimedia application. Multimed Tools Appl, 2018,
77(3), 3639

[1]

Shi X, Luo X, Liang J, et al. Frog: Asynchronous graph processing
on GPU with hybrid coloring model. IEEE Trans Knowl Data Eng,
2017, 30(1), 29

[2]

Wang Y, Davidson A, Pan Y, et al. Gunrock: A high-performance
graph processing library on the GPU. ACM SIGPLAN Notices,
2016, 51(8), 11

[3]

Cao S, Zhang C, Yao Z, et al. Efficient and effective sparse LSTM
on FPGA with bank-balanced sparsity. Proceedings of the 2019
ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, 2019, 63

[4]

Wu E, Zhang X, Berman D, et al. Compute-efficient neural-net-
work acceleration. Proceedings of the 2019 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays, 2019, 191

[5]

Tian R J, Jiang L, Deng J Y, et al. Design and implementation of re-
configurable viewport transformation unit in embedded GPU.
Mini-Micro Syst, 2018, 39(05), 1074

[6]

Vestias M P. High-performance reconfigurable computing. In: Ad-
vanced Methodologies and Technologies in Network Architec-
ture, Mobile Computing, and Data Analytics. IGI Global, 2019, 731

[7]

Yao P, Zheng L, Liao X, et al. An efficient graph accelerator with par-
allel data conflict management. Proceedings of the 27th Interna-
tional Conference on Parallel Architectures and Compilation Tech-
niques, 2018, 8

[8]

Yang C, Wang Y, Wang X, et al. WRA: A 2.2-to-6.3 TOPS highly uni-
fied dynamically reconfigurable accelerator using a novel Wino-
grad decomposition algorithm for convolutional neural net-
works. IEEE Trans Circuits Syst I, 2019, 66(9), 3480

[9]

Liu L, Li Z, Yang C, et al. Hrea: An energy-efficient embedded dy-
namically reconfigurable fabric for 13-dwarfs processing. IEEE
Trans Circuits Syst II, 2017, 65(3), 381

[10]

Jafri S M A H, Daneshtalab M, Abbas N, et al. Transmap: Transforma-
tion based remapping and parallelism for high utilization and en-
ergy efficiency in CGRAs. IEEE Trans Comput, 2016, 65(11), 3456

[11]

Karunaratne M, Mohite A K, Mitra T, et al. Hycube: A CGRA with re-
configurable single-cycle multi-hop interconnect. 2017 54th
ACM/EDAC/IEEE Design Automation Conference (DAC), 2017, 1

[12]

Kim Y, Joo H, Yoon S. Inter-coarse-grained reconfigurable architec-
ture reconfiguration technique for efficient pipelining of kernel-
stream on coarse-grained reconfigurable architecture-based
multi-core architecture. IET Circuits, Devices Syst, 2016, 10(4), 251

[13]

Tajammul M A, Jafri S M A H, Hemani A, et al. Private configura-
tion environments (PCE) for efficient reconfiguration, in CGRAs.
2013 IEEE 24th International Conference on Application-Specific
Systems, Architectures and Processors, 2013, 227

[14]

Jiang L, Deng J Y, Song S, et al. HRM: H-tree based reconfigura-
tion mechanism in homogeneous PE array for video processing.
Poster in the 55th Annual Design Automation Conference
(DAC’18), 2018

[15]

Huang J, Raabe A, Buckl C, et al. A workflow for runtime adaptive
task allocation on heterogeneous mpsocs. 2011 Design, Automa-
tion & Test in Europe, 2011, 1

[16]

Jafri S M A H, Tajammul M A, Hemani A, et al. Energy-aware-task-
parallelism for efficient dynamic voltage, and frequency scaling,
in CGRAs. 2013 International Conference on Embedded Com-
puter Systems: Architectures, Modeling, and Simulation (SAMOS),
2013, 104

[17]

Kirischian L. Reconfigurable computing systems engineering: virtu-
alization of computing architecture. CRC Press, 2017

[18]

Wei S J, Liu L B, Yin S Y. Reconfigurable computing. Science Press,
2014 (in Chinese)

[19]

Wang Y S, Liu L B, Yin S Y, et al. Hierarchical representation of on-
chip context to reduce reconfiguration time and implementa-
tion area for coarse-grained reconfigurable architecture. Sci Chin
Inform Sci, 2013, 56(11), 1

[20]

Kim Y, Mahapatra R N. Dynamic context compression for low-
power coarse-grained reconfigurable architecture. IEEE Trans
Very Large Scale Integr Syst, 2009, 18(1), 15

[21]

Venkat A, Tullsen D M. Harnessing ISA diversity: Design of a hetero-
geneous-ISA chip multiprocessor. ACM SIGARCH Comput Archi-
tect News, 2014, 42(3), 121

[22]

Hu C. Why FinFET and what next. Keynote in Shanghai Tech Work-
shop on Emerging Devices, Circuits and Systems, 2016

[23]

Deng J Y, Li T, Jiang L, et al. Design and optimization for multipro-
cessor interactive GPU. The Journal of China Universities of Posts
and Telecommunications, 2014, 21(3), 85

[24]

Deng J Y, Li T, Jiang L, et al. Design and implementation of the
graphics accelerator oriented to OpenGL. Journal of Xidian Uni-
versity, 2015, 42(6), 124

[25]

Deng J Y, Li T, Jiang L, et al. The design of multiprocessor interact-
ive GPU MIGPU-9. J Comput Aid Des Comput Graph, 2014, 26(9),
1468

[26]

Shen X B, Liu Z X, Wang R, et al. The unified model of computer ar-
chitectures. Chin J Computs, 2007, 30(5), 729

[27]

Black D C, Donovan J, Bunton B, et al. SystemC: From the ground
up. Springer Science & Business Media, 2009

[28]

Eng L Z. Qt5 C++GUI programming cookbook. Packt Publishing
Ltd, 2016

[29]

Zhang X T, Jiang L, Deng J Y, et al. Design and Implementation of
global controller in reconfigurable video array processor. Micro-
electron Comput, 2017, 34(11), 75

[30]

Journal of Semiconductors doi: 10.1088/1674-4926/41/2/022402 9

J Y Deng et al.: HRM: H-tree based reconfiguration mechanism in reconfigurable

http://dx.doi.org/10.1007/s11042-017-5284-7
http://dx.doi.org/10.1007/s11042-017-5284-7
http://dx.doi.org/10.1109/TKDE.2017.2745562
http://dx.doi.org/10.1109/TKDE.2017.2745562
http://dx.doi.org/10.1109/TCSI.2019.2928682
http://dx.doi.org/10.1109/TCSII.2017.2728814
http://dx.doi.org/10.1109/TCSII.2017.2728814
http://dx.doi.org/10.1109/TC.2016.2525981
http://dx.doi.org/10.1049/iet-cds.2015.0047
http://dx.doi.org/10.1109/TVLSI.2008.2006846
http://dx.doi.org/10.1109/TVLSI.2008.2006846
http://dx.doi.org/10.1145/2678373.2665692
http://dx.doi.org/10.1145/2678373.2665692
http://dx.doi.org/10.1145/2678373.2665692
http://dx.doi.org/10.1016/S1005-8885(14)60305-8
http://dx.doi.org/10.1016/S1005-8885(14)60305-8
http://dx.doi.org/10.1007/s11042-017-5284-7
http://dx.doi.org/10.1007/s11042-017-5284-7
http://dx.doi.org/10.1109/TKDE.2017.2745562
http://dx.doi.org/10.1109/TKDE.2017.2745562
http://dx.doi.org/10.1109/TCSI.2019.2928682
http://dx.doi.org/10.1109/TCSII.2017.2728814
http://dx.doi.org/10.1109/TCSII.2017.2728814
http://dx.doi.org/10.1109/TC.2016.2525981
http://dx.doi.org/10.1049/iet-cds.2015.0047
http://dx.doi.org/10.1109/TVLSI.2008.2006846
http://dx.doi.org/10.1109/TVLSI.2008.2006846
http://dx.doi.org/10.1145/2678373.2665692
http://dx.doi.org/10.1145/2678373.2665692
http://dx.doi.org/10.1145/2678373.2665692
http://dx.doi.org/10.1016/S1005-8885(14)60305-8
http://dx.doi.org/10.1016/S1005-8885(14)60305-8
http://dx.doi.org/10.1007/s11042-017-5284-7
http://dx.doi.org/10.1007/s11042-017-5284-7
http://dx.doi.org/10.1109/TKDE.2017.2745562
http://dx.doi.org/10.1109/TKDE.2017.2745562
http://dx.doi.org/10.1109/TCSI.2019.2928682
http://dx.doi.org/10.1109/TCSII.2017.2728814
http://dx.doi.org/10.1109/TCSII.2017.2728814
http://dx.doi.org/10.1109/TC.2016.2525981
http://dx.doi.org/10.1007/s11042-017-5284-7
http://dx.doi.org/10.1007/s11042-017-5284-7
http://dx.doi.org/10.1109/TKDE.2017.2745562
http://dx.doi.org/10.1109/TKDE.2017.2745562
http://dx.doi.org/10.1109/TCSI.2019.2928682
http://dx.doi.org/10.1109/TCSII.2017.2728814
http://dx.doi.org/10.1109/TCSII.2017.2728814
http://dx.doi.org/10.1109/TC.2016.2525981
http://dx.doi.org/10.1049/iet-cds.2015.0047
http://dx.doi.org/10.1109/TVLSI.2008.2006846
http://dx.doi.org/10.1109/TVLSI.2008.2006846
http://dx.doi.org/10.1145/2678373.2665692
http://dx.doi.org/10.1145/2678373.2665692
http://dx.doi.org/10.1145/2678373.2665692
http://dx.doi.org/10.1016/S1005-8885(14)60305-8
http://dx.doi.org/10.1016/S1005-8885(14)60305-8
http://dx.doi.org/10.1049/iet-cds.2015.0047
http://dx.doi.org/10.1109/TVLSI.2008.2006846
http://dx.doi.org/10.1109/TVLSI.2008.2006846
http://dx.doi.org/10.1145/2678373.2665692
http://dx.doi.org/10.1145/2678373.2665692
http://dx.doi.org/10.1145/2678373.2665692
http://dx.doi.org/10.1016/S1005-8885(14)60305-8
http://dx.doi.org/10.1016/S1005-8885(14)60305-8

