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Abstract: In  order  to  accommodate  the  variety  of  algorithms  with  different  performance  in  specific  application  and  improve
power efficiency,  reconfigurable architecture has become an effective methodology in academia and industry.  However,  exist-
ing  architectures  suffer  from  performance  bottleneck  due  to  slow  updating  of  contexts  and  inadequate  flexibility.  This  paper
presents an H-tree based reconfiguration mechanism (HRM) with Huffman-coding-like and mask addressing method in a homo-
geneous  processing  element  (PE)  array,  which  supports  both  programmable  and  data-driven  modes.  The  proposed  HRM  can
transfer  reconfiguration  instructions/contexts  to  a  particular  PE  or  associated  PEs  simultaneously  in  one  clock  cycle  in  unicast,
multicast and broadcast mode, and shut down the unnecessary PE/PEs according to the current configuration. To verify the cor-
rectness  and  efficiency,  we  implement  it  in  RTL  synthesis  and  FPGA  prototype.  Compared  to  prior  works,  the  experiment  res-
ults show that the HRM has improved the work frequency by an average of 23.4%, increased the updating speed by 2×, and re-
duced the area by 36.9%; HRM can also power off the unnecessary PEs which reduced 51% of dynamic power dissipation in cer-
tain application configuration. Furthermore, in the data-driven mode, the system frequency can reach 214 MHz, which is 1.68×
higher compared with the programmable mode.
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1.  Introduction

With the increasingly complex, ever-changing and ever-in-
creasing performance requirements  of  applications,  the com-
puting  capability  and  flexibility  of  existing  hardware  plat-
forms have been challenged, especially in video processing[1],
graphics  processing[2, 3],  and  artificial  intelligence[4, 5] applica-
tions,  etc.  Video  processing  has  been  one  of  the  most  popu-
lar  domains  for  multiple  decades.  Modern  video  processing
technology aims to achieve high resolution, 3-dimensional re-
presentations while supporting multiple standards with low po-
wer  consumption.  To  achieve  this,  software/system  experts
leverage  multiple  novel  algorithms  in  a  single  processing
framework  to  satisfy  the  requirements  of  various  execution
phases.  The  same  situation  has  also  been  encountered  in
graphics  processing,  which  has  many  different  algorithms
with  different  efficiencies  for  different  rendering  scenarios[6].
How to efficiently support multiple algorithms from the hard-
ware perspective arises as a critical design challenge, and has
gained  a  lot  interest  in  both  academia  and  industry  com-
munity.

The  traditional  ASIC  (application  specific  integrated  cir-

cuit)  platform possesses  the highest  performance but  cannot
support  algorithm  expendability[7].  The  multi-core  platform
has the highest flexibility but do not possess the fast comput-
ing  capability  and  low  power  dissipation[8].  With  the  increas-
ing demand of flexibility, performance and application-specif-
ic  optimization,  the  reconfigurable  architecture  paradigm,
which  yields  high  performance,  programmability  and  low
costs, has become a popular implementation platform[6, 9].

Reconfigurable  architectures  can  be  classified  into  fine-
grained,  coarse-grained or  hybrid grained on the basis  of  the
granularity  at  which  reconfiguration  is  done[10].  Coarse  gra-
ined  reconfigurable  architectures  (CGRAs),  compared  to  FP-
GAs, incur lower reconfiguration area (66% to 99.06%) and en-
ergy costs  (88% to  98%)[11],  while  FPGA is  easier  in  partial  re-
configuration since it utilizes the LUT (look-up table) as the ba-
sic  operating  unit,  but  the  large  amount  of  LUTs  leads  to
huge configuration files and hence a long time for reconfigura-
tion  due  to  the  overhead  of  bit-level  reconfigurability[12].
CGRA-based multi-core architecture then emerged to acceler-
ate  the  entire  application  by  running  separate  kernels  or
inter-dependent kernels in parallel[13], however, these architec-
tures  are  not  flexible  enough  to  adaptively  support  various
cases  of  the  kernel-level  parallelism  (KLP)  because  the  re-
sources  cannot  be  efficiently  utilized  under  monotonous  ag-
gregation  of  multiple/many  CGRAs,  which  results  in  either
high  power  dissipation  or  performance  bottleneck[14].  There-
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fore, boosting the efficiency of reconfigurable platform is con-
sidered as a critical concern.

To solve such practical  challenges,  we propose a new re-
configuration mechanism for modern video and graphics pro-
cessing  on  the  customized  CGRA-like  architectures  or  pro-
cessing  elements  (PE)  array.  This  reconfiguration  mechanism,
which is called H-tree based hierarchical reconfiguration mech-
anism  (HRM)[15],  focuses  on  fast  updating  and  the  simultan-
eous  invoking  of  reconfiguration  context  and  scalability  of
computing  resource,  which  can  also  shut  down  the  PE/PEs
that  are  not  necessary  for  the  current  configuration  to  re-
duce the power  consumption.  Originally,  the  H-tree  is  widely
used  to  achieve  simultaneous  delivery  of  clock  signal  in
large-scale  IC  (Integrated  Circuit)  design  without  skew.  Com-
pared  to  its  original  use  of  transferring  clock  signal,  the
amount  of  reconfiguration  contexts  needs  to  be  delivered  in
the  reconfigurable  domain  is  much  larger.  Hence,  achieving
simultaneous  update  is  difficult.  Huffman  coding  is  the  best
coding  method  for  constructing  variable  length  character
based on the probability of character occurrence. At each en-
coding  node,  the  character  is  determined  as  ‘0’  or  ‘1’  accord-
ing to the probability of the code appearing, and the final en-
coding  is  generated  in  this  way.  Similarly,  The  HRM  gener-
ates the address code of the destination PE based on the prin-
ciple  of  ‘0’  for  turning  left  and  ‘1’  for  turning  right.  The  HRM
with  Huffman-coding-like  and  mask  addressing  method  can
transfer reconfigurable contexts in unicast, multicast or broad-
cast  mode  and  trigger  them  simultaneously.  We  also  pro-
posed  a  CGRA-like  homogeneous  PE  array  with  HRM  for
video  and  graphics  processing  to  verify  the  proposed  ap-
proach.  The  PE  can  support  both  programmable  mode  and
data-driven  mode.  The  proposed  PE  array  with  HRM  can
achieve  comparable  performance  with  ASIC  when  work  is
done in data-driven mode.

The contributions of this paper can be summarized as fol-
lows:

We propose a novel H-tree based hierarchical reconfigura-
tion  mechanism  to  achieve  high-speed  reconfiguration  on
modern  CGRA-like  architectures  or  PE  arrays,  which  achieves
more than 20% improvement in working frequency and is 2×
faster in context updating.

(1)  We  leverage  the  Huffman-coding-like  addressing  and
mask addressing methods to achieve the simultaneous move-
ment  of  reconfiguration  contexts  among  particular/related
PEs  in  unicast,  multicast,  and  broadcast  modes.  In  addition,
such  achievement  provides  the  scalability  for  computing  re-
sources,  and  can  power-off  the  unnecessary  PEs  in  current
scenario to decrease power consumption.

(2)  We  design  a  homogeneous  PE  array  to  verify  the
HRM,  while  the  PE  supports  both  programmable  mode  and
data-driven  mode,  and  it  can  achieve  comparable  perform-
ance with ASIC in data-driven mode.

The  rest  of  this  paper  is  organized  as  follows.  Section  2
summarizes  the  related  works  of  remapping  context  trans-
mission  and  management  strategies.  Section  3  presents  the
motivation  of  the  proposed  reconfiguration  mechanism.  In
Section  4,  we  elaborate  the  methodology  in  details,  includ-
ing  both  the  HRM  and  also  the  associated  PE  array  architec-
ture. Section 5 depicts the architecture modeling, RTL design with
Verilog  and  implementation  of  prototype  system.  Section  6

demonstrates  the  evaluation  results  and  Section  7  concludes
the paper.

2.  Related works

In order to enhance the resource utilization (also the com-
puting  capability)  and  the  flexibility  of  a  reconfigurable  sys-
tem, the design of reconfiguration mechanism has gained tre-
mendous amount of attention. Such mechanisms usually con-
trol  reconfigurable  context  transmission  and  manage  such
contexts.  In  this  section,  we  review  context  transmission
technologies and context management strategies separately.

2.1.  Context transmission

Run-time  remapping  tries  to  change  the  physical  loca-
tion of a task to decrease the requirements of memory band-
width,  communication  costs[16].  Dynamic  parallelism  explores
the  parallelism  of  a  task  to  induce  speedup[17].  However,  the
existing  re-mappers  mostly  target  packet-switched  NoC  (net-
work  on  chips)  and  are  therefore  not  applicable  to  most
CGRAs[14] or  CGRA-based  multi-core  architecture.  As  for  FP-
GA, the typical example of fine-grained reconfigurable archit-
ecture,  which  is  claimed  as  supporting  partial  or  dynamic  re-
configuration,  cannot  achieve  the  goal  actually  because  of
the  large  size  of  configuration  file  which  results  long  confi-
guration time and leads to inadequate flexibility[18, 19].

2.2.  Context management

The  RSF[13] approach  utilizes  the  pipelining  of  kernel-
stream  and  intra/inter-CGRA  co-reconfiguration  to  achieve
the  design  objectives  of  minimal  interconnection  overhead
and  flexibility  comparable  to  completely  connected  fabric
(CCF).  It  accomplishes the objectives with the sharing of  con-
text  memory  (CMs)  and  data  buffers  (DBs).  The  TransMap[11]

method  stores  only  one  implementation  scheme  in  the  con-
figuration  memory  and  applies  a  series  of  transformations  to
the stored bit-stream for  remapping or  parallelizing an appli-
cation.  In  order  to  accelerate  the  transmission  of  contexts,
some  context  compression  methods  have  also  been  deve-
loped[20, 21]. The fat binary approach stores multiple task map-
ping schemes for each application at compile time and dyna-
mically  chooses  the  appropriate  one  at  runtime[22].  The  de-
cision  of  choosing  the  appropriate  scheme  is  application-de-
pendent.  And  in  HReA[10],  where  the  whole  PE  array  shares
one CM with one data access port.

3.  Motivation

In  this  section,  we  present  the  motivation  of  our  ap-
proaches.  The  primary  motivation  comes  from  the  actual
speed requirements  of  switching among multimedia  applica-
tions  and  the  scalability  analysis  of  current  reconfigurable
mechanisms.

3.1.  Fast updating and invoking of reconfigurable

context

Fast  function  switching  is  critical  for  the  performance  of
reconfigurable  platform.  The  representative  of  fine  grained
reconfigurable architecture, FPGA (field programmable gate ar-
ray),  consumes  milliseconds  of  time  to  reorganize  the  func-
tion  due  to  its  bit-level  reconfigurability,  such  as  534  ms  for
Stratix5-GXA3[19].  In  the  RSF  approach  mentioned  in  the
Ref.  [13],  one CM can be shared by the two CGRAs next  to it,
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so  one  CGRA  can  be  configured  to  execute  the  tasks  follow-
ing  the  contents  of  two  different  CMs  which  are  located  at
the  different  directions  of  it.  This  means  that  one  CGRA  can
work in at least two different configurations. However, the up-
dating of  the CM’s  content  is  not  described in  the RSF meth-
od. The CM in RSF is of 4 kB size,  which needs a considerable
amount of time to fill in, and it is also critical for the partial or
dynamic  reconfiguration  of  the  computing  resources.  The
context  compression  related  approaches  need  decompres-
sion  process,  which  will  consume  additional  time  for  decom-
pression  and  also  increase  the  design  overhead.  We  propose
a H-tree based hierarchical reconfiguration mechanism which
can  propagate  the  context/instruction  information  from  the
controller  or  the host  end in one cycle.  When the computing
resources (PEs in our approach) work in the SIMD or data-driv-
en  mode,  the  reconfiguration  of  a  PE  can  be  done  in  only  a
single  clock  cycle.  The  contexts  or  instructions  stored  in  the
memory  can  be  invoked  with  a  call-like  instruction  and  the
RAM part of the context memory can be updated prior to the
call  according to the performance model,  which will  hide the
latency  of  updating  process.  The  call-like  instruction  invokes
parts  or  all  the  contents  according  to  the  instruction  name
which  is  similar  to  the  API  (application  programming  inter-
face)  function  such  as  OpenGL  commands.  As  for  the  start
and stop of transmission, there should be a performance evalu-
ation model which is application-dependent.

3.2.  Scalability of reconfiguration mechanism

With the new transistor process and tri-gate fin design,  a
single  chip  will  accommodate  more  computing  resources[23].
So,  the  reconfiguration  mechanism  should  facilitate  this  real-
ity  with  minimal  interconnection overheads  increasing.  In  or-
der  to  achieve  this  goal,  the  reconfiguration  mechanism
should support the scalability of computing resources. The re-
configuration  mechanism  we  proposed  can  access  each  PE
with  10-bit  address  bus  at  the  root  and  1-bit  bus  at  the  PE
end  in  one  clock  cycle  in  our  32  ×  32  PE  array  architecture.
This  mechanism  possesses  the  characteristic  of  scalability,

which can be expended easily to larger scale PE array. For ex-
ample,  with  1-bit  more  address  bus  at  the  root  of  H-tree,  it
can access 2048-PE array with little performance degradation.

Motivated  by  the  above  description,  and  also  the  power
consumption  requirement,  which  is  a  key  challenge  in  large
scale  system  on  chip  (SoC),  we  propose  HRM  to  increase  re-
configuration  efficiency,  minimize  interconnection  costs
while  supporting  high-throughput  operating  modes  such  as
SIMD  (single  instruction  multiple  data)  and  data-driven  for
the  entire  system  to  achieve,  and  control  the  power  dissipa-
tion by shutting down unused computing resources in specif-
ic scenarios. The proposed method is one kind of system solu-
tion  for  video  processing  and  graphics  processing  applica-
tions.

4.  Methodology

This section discusses the HRM with Huffman-coding-like
addressing  and  mask  addressing  firstly,  and  then  demon-
strates the HRM applied reconfigurable PE array architecture.

4.1.  HRM

In  order  to  improve  the  efficiency  of  reconfiguration  (in-
cluding the fast updating and invoking of reconfigurable con-
text),  minimize  interconnection  costs,  and  also  control  the
power consumption, we propose HRM — a novel reconfigura-
tion mechanism. The HRM leverages Huffman-coding-like ad-
dressing  and  mask  addressing,  which  can  be  easily  applied
on  a  homogeneous  thin-core  PE  array  (for  example,  consist-
ing  with  1024  PEs).  The  HRM  structure  is  shown  in Fig.  1.  In
order to show it clearly, Fig. 1 only presents 8 × 8 PEs.

HRM is  designed from the idea of  clock-tree with H-type,
which can guarantee the minimal time skew so that the inform-
ation  can  arrive  at  every  destination  at  the  same  time.  The
video  processing  and  graphics  processing  need  some  associ-
ated  PEs  to  work  together  as  a  certain  function  unit.  For  ex-
ample,  the  reconfigurable  video  processing  system  requires
multiple  PEs  to  execute  the  same  task,  such  as  intra-predic-
tion  (Intra),  integer  motion  estimation  (IME),  fractional  mo-
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Fig. 1. (Color online) The topology of HRM. (a) Unicast. (b) Multicast/broadcast.
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tion  estimation  (FME),  motion  compensation  (MC),  DeBlock-
ing  filter  (DB),  etc.  And  in  graphics  processing  field,  the  ver-
tex shading, the plane-clip,  projection, 3D-Clip,  pixel  shading,
primitive  assemble  unit,  back-face  culling,  viewport  trans-
formation,  fragment  operating  unit  and  so  on  are  also  need
several  PEs  to work together[24–26].  The associated PEs  should
also start simultaneously to process in parallel.

The  global  controller  determines  the  operating  mode
and selects the appropriate algorithm for PEs. HRM is used to
transfer the instructions or configuration messages to a specif-
ic PE or associated PEs, and collect status information of each
PE  to  the  global  controller.  When  the  global  controller  trans-
fers  data to or  from the PEs via  HRM, it  utilizes  Huffman-cod-
ing-like  code  to  address  each  PE.  Using  the  1024-PE  array  as
an  example,  HRM  addressing  bus  is  of  10-bit  width  at  the
root (the bus end which connects to the controller).  HRM will
take  10-level  turns  to  access  the  destination  end  (each  PE).
When the bit of the bus is logic ‘1’, HRM will take a right turn;
If the bit[9] is logic ‘0’, HRM will take a left turn. The bus width
will be 9-bit width after the 1st turn, 8-bit width after the 2nd
turn,  and  soon.  When  the  information  delivered  by  HRM
reaches  the  PE,  the  bus  is  only  1-bit  width.  The  10-bit  ad-
dress  can  also  be  used  as  mask  information  transmission,
which is used for multicast or broadcast of reconfiguration con-
text.  This  kind of  addressing is  easy  to  expand to  facilitate  to
the larger scale PE array with low cost.  For example,  if  the PE
array  is  of  2048  PEs,  the  bus  width  is  only  1-bit  wider  at  the
root.  In  addition  to  the  addressing  bus,  there  is  1-bit  power
control  signal,  which  is  leveraged  to  realize  the  clock  gating.
This  bit  is  logic  ‘1’  by  default.  After  the  configuration,  HRM
will  set  this  bit  ‘0’  and disable the clock of  each unused PE in
current scenario.

With  the  Huffman-coding-like  addressing  and  mask  ad-
dressing  method,  HRM  can  transmit/receive  four  kinds  of  in-
struction/context information with 32-bit width:

(1)  The operation instruction with issuing format of:  2-bit
flag of ‘01’ + 30-bit RISC-like instruction.

(2)  The  ‘call’  instruction  with  issuing  format  of:  2-bit  flag
of ‘11’ + 16-bit invoking address + 14-bit extensible space.

(3)  The broadcast  SIMD/data-driven instruction with issu-
ing  format  of:  2-bit  flag  of  ‘10’  +  30-bit  RISC-like  instruction.
In this format, the broadcast mask should be transmitted first
with  the  2-bit  flag  of  ‘10’,  and  at  each  turn,  the  switch  node
will  mark  the  transmitting  direction  according  to  the  bit
value.  If  that  bit  is  logic  ‘1’,  the  instruction  sent  next  will  be
transmitted  in  both  directions;  as  for  logic  ‘0’,  the  instruction
sent  next  will  be  transmitted  according  to  the  address  bit
value.

(4)  The  status  feedback  with  issuing  format:  2-bit  flag  of
‘00’+30-bit  extensible  space.  This  is  used  for  collecting  the
status  of  each  computing  resource  for  performance  evalu-
ation,  and  it  is  running  parallel  with  the  computing  resource
without disturbing the normal operation.

The  global  controller  monitors  the  operating  status  of
each functional unit, determines the operating mode, and se-
lects  a  particular  algorithm  based  on  the  performance  evalu-
ation  model  in  real  time  for  PEs.  When  the  host  interface  ac-
cesses  the  array  processor,  the  global  controller  receives  the
bus  information  from  the  host  interface  and  judges  whether
the  instruction  is  unicasted,  multicasted,  broadcasted,  or  fed

back according to the flag.

4.2.  PE array structure

The HRM is applied on the homogeneous thin-core PE ar-
ray. In order to verify the availability of HRM, we also design a
reconfigurable  PE  array.  The  proposed  PE  array  is  different
from the CGRA-based multi-core architecture[13], but with simil-
ar functionalities and the same 2D mesh structure. Such similar-
ities  guarantee  that  the  HRM  can  be  adopted  by  other  state-
of-the-art CGRA-based architectures directly. The CGRA-based
multi-core architecture typically includes general purpose pro-
cessors,  multi-CGRA,  and  on-chip  communication  architec-
ture  such  as  NoCs  or  on-chip  bus.  The  general  purpose  pro-
cessor  mainly  executes  control  instructions  and  irregular
code  segments.  The  multi-CGRA  performs  data-intensive  ker-
nel code segments. The proposed PE array composes of 1024
homogeneous thin-core RISC-like (reduced instruction-set com-
puter)  processing  elements.  The  1024  PEs  is  coupled  directly
with adjacent interconnect, in which each 4 × 4 PEs form a lo-
gical PE cluster (PEC), as shown in Fig. 2(b).

The 1024 PE array consists of 64 clusters organized in 8 ×
8 structure. In many applications, there exists remote data com-
munication  between  different  PEs.  The  adjacent  intercon-
nect  and  distributed  memory  cannot  efficiently  and  flexibly
handle such communications. We develop an inter-cluster com-
munication  structure  which  connects  the  PEC  with  a  router
(R)  through  network  adapter  (NA).  The  topology  is  shown  in
Fig. 2(a).

The PE communicates  with the adjacent  PE through four
shared registers (RN, RE, RW,RS, which represents the four dir-
ections,  north,  east,  west,  and  south  respectively),  which  can
be  called  the  NEWS  adjacent  interconnect[27].  These  registers
can be accessed directly by each adjacent PE.  Each PE has 12
local registers and 4 shared registers. Totally, each PE can ma-
nipulate  16  registers.  Since  the  PE  is  RISC-like  processor,  it
can  burden  the  role  of  general  purpose  processor  to  process
intensive  control  instructions  or  irregular  tasks.  In  addition,
since  there  are  many  PEs,  they  can  handle  the  ILP  (instruc-
tion level parallelism) computing mode.

The PE can also be configured as data-driven mode for im-
proving the performance and energy efficiency, which can be
enabled or disabled by the control commands transmitted by
HRM.  As  shown  in Fig.  2(c),  the  bold  lines  indicate  the  con-
trol flow and data flow after the data-driven mode is enabled,
and the control  flow mainly  includes the operation code and
the  data  path  reconstruction  signal,  where  the  dataflow
comes  from  the  last-level  PE.  When  data-driven  mode  is  en-
abled,  the  fetch  stage,  the  decode  stage,  and  the  write  back
stage  are  stalled  by  the  gated  clock.  The  data  from  the  last-
level  PE  is  directly  transmitted to  the  execution unit,  and the
corresponding operation is performed according to the opera-
tion  code  received  from  the  HRM,  then  the  result  is  sent  to
the adjacent PE through four shared registers directly.

The  instruction  memory  (IM)  of  each  PE  used  to  buffer
the operating instructions/contexts. The operations of a partic-
ular  application  are  stored  in  the  IM  as  default  configuration
when  power  on  the  system.  As  the  operating  instruction  is
stored in the memory, the proposed reconfiguration mechan-
ism  may  sound  no  different  than  fat  binary.  However,  the  IM
also  can  receive  run-time  reconfiguration  contexts  from  the
global controller through the HRM based on the selected per-
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formance  model.  Under  the  help  of  HRM,  the  reorganized
function  running  on  one  PE  or  several  associated  PEs  can
start  simultaneously,  which  is  very  different  from  fat  binary.
With the instructions stored in default, or the real-time instru-
ctions  passed  from  the  global  controller  through  HRM,  the
PEs  can  act  as  a  specific  function  unit  (FU)  and  operate  at
data-driven  mode  to  improve  performance  while  reducing
power dissipation.

The data memory of  the PE array is  of  distributed shared
structure.  Each  PE  has  its  own  data  memory  with  size  of
512 B.  In  order  to achieve the large memory size and low ac-

cessing  latency,  the  RAMs  in  a  PE  cluster  are  shared  logically
through  the  column  and  row  buses  as  shown  in Fig.  3.  In
order  to  show  it  clearly, Fig.  3 only  presents  the  memory
shared structure  of  4  PEs.  As  for  the intra-cluster  data  access,
a  high-speed  switching  structure  is  realized,  which  can  meet
16-channel data parallel read/write access.

5.  Prototype development and experimental
setup

This  section  describes  the  architecture  modeling  soft-
ware  platform,  RTL  synthesis  configuration,  and  FPGA  proto-
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Fig. 2. (Color online) Homogeneous thin-core PE array. (a) Inter –cluster communicate. (b) PE cluster. (c) Micro-architecture of PE.
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Fig. 3. (Color online) Distributed shared memory structure.
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type system.

5.1.  Architecture modeling

In order to evaluate the feasibility of the proposed recon-
figurable mechanism, we developed an architecture model us-
ing  SystemC[28],  which  describes  the  behavioral  model  of  the
1024 PE array.  The reconfigurable interface is developed with
Qt[29],  which  communicates  the  reconfiguration  contexts  and
video sequence/graphics data between the user and PE array.
The user can type the operation into each PE and assemble it
into binary automatically.

5.2.  Design of HRM

According  to  the  above  analysis,  the  key  to  realize  fast
and  dynamic  reconstruction  of  reconfigurable  array  is  HRM.
Therefore,  in this part,  we further explain the hardware archi-
tecture of HRM in combination with Section 4 of HRM design
ideas  and  methods.  According  to Fig.  1,  the  hardware  archi-
tecture  consists  of  two  parts:  a  global  controller  and  an  H-
type reconfiguration network.

Global  controller:  It  is  used  to  complete  management  of
configuration  information,  monitoring  of  PE  status,  and  data
interaction with the host. The configuration information man-
agement  module  includes  two  parts:  a  configuration  storage
management  module  and  a  configuration  network  address
generation module. The configuration storage manager gener-
ates  a  corresponding  address  according  to  the  request  sent
by  the  host,  accesses  the  corresponding  configuration  stor-
age,  and configures the network address  generation module.
The  network  address  generator  configures  the  addressing
node according to  the  requirements.  The  data  interaction on
the  host  side  mainly  receives  commands  from  the  upper
layer host and provides real-time feedback status information
of the PE array.

H-type  reconfiguration  network:  This  network  completes
the  delivery  of  configuration  information  and  the  collection
of  status  information.  In Fig.  1,  each  node  in  the  H-type  has
two  configurable  registers,  one  for  directional  and  one  for
mask. The directional controls the transmission in a single dir-
ection  on  the  node,  with  left  ‘0’  and  right  ‘1’.  The  mask  con-
trols  the simultaneous transmission in  both directions on the
node.  The  mask  control  has  a  higher  priority  than  the  direc-
tion  control.  The  entire  data  path  is  established  by  configur-
ing these two registers on each node to achieve unicast, mul-
ticast and broadcast of the array. As shown in Fig. 1(a) (which
consists  of  8  ×  8  PEs,  inferring  6-bit  addressing  bus),  after
configuration the unicast mode is adopted, and the configura-
tion  information  is  sent  to  the  destination  PE  through
Node1_1,  Node2_1,  Node3_1,  Node4_1,  Node5_2,  and
Node6_3  in  sequential  order.  Since  the  addressing  of  the  PE
(filled  with  red)  takes  six  turns  of  right,  right,  left,  left,  right,
and left, the address should be 110010. The multicast or broad-
cast  mode  is  shown  in Fig.  1(b).  The  configuration  informa-
tion  arrives  at  Node2_1  and  Node2_2  at  the  same  time.  The
subsequent  configuration  process  is  similar  to  the  unicast
mode.  When  transfer  a  single  configuration  to  a  PE,  the  ad-
dress  and  operation  code  are  transferred  in  one  pass[6, 30];
When  a  series  of  configuration  information  required  by  a  PE,
we use the transfer method with link establishment, data trans-
fer,  and link termination. During the data transfer,  the follow-
ing  configuration  information  does  not  need  to  have  ad-
dress information. The network is also responsible for collect-

ing data from PE/PEs to the host for performance evaluation.

5.3.  Implementation of prototype system

We  developed  the  hardware  of  proposed  HRM  and  also
the  PE  array  using  Verilog  HDL.  The  circuit  specification  of
the  proposed  architecture  and  the  RSF  architecture  is  shown
in Table  1.  The  prototype  system  of  the  proposed  approach
is  implemented  in  the  BEE4  FPGA  development  board  of
BeeCube  with  the  FPGA  chip  of  XC6VLX550T,  as  shown  in
Fig.  4,  which  takes  video  processing  as  an  example.  The  top
left  part  shows the  console  on host  machine,  where  the  user
can  input  the  video  sequence  and  reconfiguration  contexts.
The  bottom  left  part  shows  the  console  of  the  BEE4,  where
user can configure the FPGA and enable it to execute. The bot-
tom  right  part  is  BEE4  platform,  where  the  proposed  HRM
and  PE  array  are  mapped  into  and  running  on.  The  top  right
part  is  the reconstruction image,  where the user  can observe
the  results  intuitively.  The  prototype  system  can  work  at
speed of  up to 150 MHz,  and the HRM can work at  440 MHz,
which  means  that  the  proposed  reconfigurable  mechanism
won’t  be  the  bottleneck  of  the  whole  system.  In Fig.  4,  the
program  running  on  each  PE  is  stored  by  default,  so  it  is  the
power-on  configuration  of  the  PE  array.  In  the  next  part,  we
will describe the reconfiguration process.

6.  Evaluation

In  this  section,  we  examine  the  reconfigurable  process

Table 1.   PE cluster RTL implementation.

Component Parameter This paper RSF
PE Bit-width of regs in a PE 16 16

# of regs in a PE 16 4
# of PEs 16 16

CM(4 kB)/IM(1 kB) Bit-width of a CM/IM 32 32

# of CMs/IMs 16 16
CB(1.5 kB)/DRAM(512 B) # of sets 1 2

# of banks in a set 1 3
Bit-width of a bank 16 32
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Fig. 4. (Color online) The prototype system of the proposed approach.
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on the prototype platform. We check the whole system struc-
ture reorganization on video processing, graphics processing,
the  data-driven  mode  operation  to  achieve  high  perform-
ance  and  low  power  consumption,  and  then  the  comparison
of reconfigurable process.

6.1.  Application in video processing

Under  the  proposed  HRM  and  associated  PE  array,  we
implemented one kind of  video processing system, as  shown
in Fig.  5(a).  While  testing,  we  found  that  the  FUs,  such  as  In-
tra  and  MC,  are  the  bottlenecks.  Then  we  reorganized  it  to
Fig. 5(b) in run-time. In Fig. 5, each module with different col-
or presents different FU, and each FU occupies a PE cluster.

In  order  to  realize  this  reconfiguration,  the  contexts
should  be  transferred  are  shown  in Table  2.  As  shown  in
Fig.  5,  when  the  array  is  initialized,  PEC01  performs  DCT  al-
gorithm  and  occupies  16  PEs.  After  reconfiguration,  the  clu-
ster  performs  Intra  prediction  algorithm  and  occupies  2  PEs.
We  use  16→2  to  indicate  this  change,  so  are  the  15→8,
9→12, etc.  The operation instructions can be transferred dur-
ing  the  execution  of  last  reconfiguration,  so  the  reorganiza-
tion of PE array only spend the time of call instructions’ trans-

mission,  which  means  the  reconfiguration  time  is  55  clock
cycles. In HReA, the contexts’ transmission is finished through
router.  And  technically  the  PE’s  reconfiguration  will  spend  at
least  2  cycles  for  each  call-like  context,  i.e.,  it  will  spend  2×
more  time  for  reconfiguration. Fig.  6 shows  the  video  pro-
cessing results under two sequences.

Meanwhile,  we  compared  the  power  consumption  of
the  new  configuration  of  video  processing  with  and  with-
out  the  power  control.  If  left  the  unused  PEs  running  in  idle,
the  dynamic  power  dissipation  is  286  mW;  while  in  the  HRM
verison,  we  leverage  the  power  control  signal  to  disable  the
unnecessary PEs in this context, and the dynamic power dissi-
pation  is  139  mW.  The  power  consumption  reduced  about
51%.

6.2.  Application in graphics processing

We  also  apply  the  proposed  HRM  and  associated  PE  ar-
ray  to  graphics  processing.  Here we take a  scene of  viewport
transform  as  an  example.  The  scheme  is  mapped  the  graph-
ics processing algorithm on 1 PE cluster. By reconfiguring the
function of PE, the viewport transformation can be flexibly real-
ized  with  lower  computation  cost[6]. Fig.  7 shows  the  overall
mapping  process  of  viewport  transformation.  The  final  out-
put  is  consistent  with  the  results  derived  from  the  software
VS2013  platform,  proving  the  correctly  implementation  of
graphics  processing  algorithm  on  the  proposed  HRM  and  PE
array. Fig.  8 shows  the  output  from  the  prototype  system,
where  the  two  mouse  marks  are  used  for  select  and  feed-
back of OpenGL.

6.3.  Realization of data-driven mode

Data-driven mode is used for the data intensive computa-
tion.  We  select  the  six-tap  filter  in  fractional  motion  estima-

Table 2.   The statistics of reconfiguration instructions.

FU changing PE Operation instruction Call instruction

DCT→Intra 16→2 2856 8
DB→Intra 15→8 2087 9
Intra→DB 9→12 2584 8
IME→DCT 11→16 3136 7
FME→IME 2→11 39 16
FME 2 0 2
MC 5 0 5
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Fig. 5. (Color online) Organizations of video processing system. (a) Original organization of video processing system. (b) Video processing sys-
tem with higher parallelism.
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Fig. 6. Results of different sequences in video processing. (a) Salesman. (b) Bridge.
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tion  (FME)  algorithm  of  video  encoding.  FME  performs  mo-
tion  search  around  the  refinement  center  pointed  to  by  in-
teger  motion estimation (IMV)  and further  refines the integer
motion  vectors  (IMVs)  into  fractional  MVs  (FMVs)  of  quarter-
pixel precision. FME interpolates half-pixels using a six-tap fil-
ter. The six-tap filter was expressed and realized in ASIC struc-
ture  as  shown  in Fig.  9(a).  In  order  to  realize  it  in  proposed
structure,  we map it  on the PE array as shown in Fig.  9(b).  All
the configuration contexts are transferred from global control-
ler through HRM, and each associated PE latch its own config-
uration information. Then the PE array works in this configura-
tion.  In  such scenario,  the  working speed can reach 214 MHz
in this FPGA. And if we utilize Verilog HDL to describe the six-
tap  filter  directly  and  implemented  it  on  the  same  FPGA,  its
operating  frequency  is  500  MHz.  The  results  show  that  the
performance of proposed reconfigurable structure is compar-
able to the ASIC circuit.

6.4.  RTL-synthesis results

In order to evaluate the performance of the proposed ar-
chitecture  and  the  HRM,  we  synthesize  the  circuit  using
design  compiler  under  the  process  of  90  nm  CMOS  techno-
logy.  The results  of  area,  critical  delay,  and power  dissipation
are shown in Table 3. The synthesis results show that the pro-
posed  approach  has  some  advantages  in  speed,  and  area  of
25.1%,  36.9%,  respectively  when  compared  with  RSF,
however,  the  power  dissipation  is  higher,  but  still  very  low,
about 1.96 mW. When compared with HReA, the speed advant-
age  is  about  21.6%,  however,  the  HReA  is  implemented  un-
der the 65 nm CMOS technology. The HRM maximum operat-

ing  frequency  can  reach  494.16  MHz.  The  instruction  issuing
operation is  completed in one cycle,  the instruction broadca-
sting  operation  is  completed  in  2  cycles,  and  the  data  feed-
back operation is completed in one cycle. Hence, we can pre-
dict  that  HRM  will  have  a  comparable  speedup  under  the
same  technology.  From Table  3,  we  can  observe  that  the
HRM only occupies 0.1% area of one PE cluster.  The area cost
can be negligible.

7.  Conclusion

Prior  reconfigurable  architectures  suffer  from  perform-
ance bottleneck due to the inadequate flexibility and low con-
text  switching  speed.  This  paper  proposes  a  fast  reconfigur-
able mechanism —HRM and applies it in a massive homogen-
eous PE array to achieve the simultaneous movement of recon-
figuration  contexts  among  particular/related  PEs  in  unicast,
multicast,  or  broadcast  modes  and  also  control  the  power.
We develop the HRM architecture model using SystemC, imp-
lement  the  HRM  design  in  Verilog,  simulate  with  Questasim,
synthesize  using  Design  Compiler,  and  implement  on  a  FP-
GA  board.  Compared  to  the  RSF  and  HReA,  HRM  can  spee-

Table 3.   Synthesis results of PE cluster.

Comparison
aspect

PE cluster
HRMThis

paper RSF HReA Comparison

Process (nm) 90 90 65 — 90
Area (gate
equivalent)

4155696 6586491 — 36.9%↓ 4331

Critical delay
(ns)

2.80 3.74 3.57 25.1%↓,
21.6%↓

2.02

Power (mW) 1.96 0.8 — 145%↑ 0.48
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Fig. 8. (Color online) Rendering scene by proposed scheme.
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dup  critical  delay  by  an  average  of  23.4%,  and  improve  the
context/algorithm  switching  performance  by  2×  while  sav-
ing 36.9% area. In the context switching, HRM can shut down
the  unnecessary  PEs  which  reduced  51%  of  dynamic  power
dissipation  in  one  video  processing  configuration.  Moreover,
in  the  data-driven  mode,  the  proposed  PE  array  with  HRM
can achieve performance comparable to ASICs.
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